Pre-training and fine-tuning are integral strategies in the development of deep learning models, particularly in the context of transfer learning. In this section, we'll explore these concepts in detail, elucidating how training works and how models are created through these processes. Strategy & Development Pre-training Definition : Pre-training involves training a neural network model on a large dataset to learn generic representations of data features, typically using unsupervised or self-supervised learning techniques. Training Process : During pre-training, the model learns to capture general patterns and features present in the data without being task-specific. This is achieved by optimizing parameters to minimize a predefined loss function, such as reconstruction loss in autoencoders or language modeling loss in transformers. Model Creation: After pre-training, the model's weights and parameters encode valuable knowledge about the underlying data distribution, formi
If you love Technology..